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Artificial intelligence in medical applications

Deep neural networks and deep learning — Impressive success in later years all
L_T__li thorugh the worlds of computer vision, image processing, signal processing,
computer science etc.

Challenges with data access in medical applications.
Combining domain knowledge and data learning!

This short talk will focus on two medical applications:

histopathological images, and safer births



Urinary bladder cancer

In 2015 it resulted in 188,000 deaths globally

Fourth most common cancer type
among men in Europe

70% increase in incidence past four
decades in Norway

Patients diagnosed with bladder cancer:

* Recurrence rate: 50-70% will experience one or more
recurrences

* Progression: 10-30% will progress to a higher cancer stage

Fat
Muscle

Comectve e * Biopsy of the cancer tumour

* Determining the cancer grade/stage
manually is time-consuming,
subjective and low reproducibility.
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Automated analysis of histopathological images of

unrinary bladder cancer

* Digital pathology: scanned whole slide
images (WSI) opens new possibilities

100 000

* Norway in a unique position to exploit

this since first country digitizing all pathology labs,
collecting all WSI in a centralized database

70 000

* Automated analysis for:

* Time efficient, objective, reproducible
interpretation

* Region of interest extraction for further
analyses and/or visualization

* Segmentation of cancer areas, and
classification of cancer grade and diagnoses

* Prediction of recurrence and progression risks
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Region of interest extraction

Want to classify different parts of the image into different categories. The
interesting parts can later be used with an other new network for diagnosisor
prognosis prediction
. ' & Urothelium
= Stroma
Damaged tissue
Muscle tissue

Blood

Background




ROl extraction / segmentation 1:

Learning relatively small networks from scratch on few and sparsly labelled data utilizing autoencoders
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ROI extraction 2:

Using transfer-learning in
multiscale.

VGG16 networks at three
different scale,
concatenating FV + fully
connected layers trained
on (relatively small set of)
labelled data
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Heat Maps — example class

Original image Urothelium tissue

100 %

50 %

0%

= Heat maps are post processed by applying a
Gaussian filter kernel with standard deviation
of 6=0.6 to smooth the image.



Heat Maps — example class

Original image Damaged tissue
100 %
.,.;". Fﬁ;\; ,&:!‘ngw °
50 %
0%

= Heat maps are post processed by applying a
Gaussian filter kernel with standard deviation
of 6=0.6 to smooth the image.



Heat Maps — example class

Original image Stroma tissue
= 100 %
@ A
50 %
0%

= Heat maps are post processed by applying a
Gaussian filter kernel with standard deviation
of 6=0.6 to smooth the image.



Melanoma : Epidermis segmentation

Subcutaneous
Tissue

Epidermis
contour

Dermis

benign

Malignant
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Epidermis segmentation — U-Net approach
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CET 0 0.35 0.99 0.47 0.52
GTSA 21 0.73 0.31 0.39 0.42
THM 17 0.69 0.38 0.45 0.47
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Safer births

Sensor signals

- Fetal heart rate

- Resucitation signals (ECG, BMV)
- Video of rescucitation
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Video analysis

activity detection system for newborn resuscitation videos

Object
detection

Post
processing

Sequential
Neural
Network

Sequential
Neural
Network

Sequential
Neural
Network
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Tried different things. So far best results using the
pretrained model of YOLOV3, and continue training
on our data




Inputs

(batch_size: 416, 416, 32)

Y

Conv 32x3x3 +
Conv 64x3x3_s2
(batch_size: 208, 208, 64)

Residual Block 1x64
(batch_size: 208, 208, 64)

(batch_size: 104, 104, 128)

\

Residual Block 2x128

Darknet-53 (53 conv-layers) trained on Imagenet
(feature extractor)

75 conv layers, no fully connected layers.

YOLOvV3 Network Architecture

Conv: Convolutional layer

~s2: with stride of 2

Conv layer with stride 2 is used for downsampling ( no pooling)
ResNet for improved feature learning (skip connections)

FPN for utilizing multiscale

Multi-label classification

Concatenate: concatenate two inputs

batch_size: the output size of this layer/block

Residual Block: repeated convoIlt

ith ResNet structure
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FPN: Feature Pyramid Network



Never enough labeled data! Training data (video, augmented, synthetic)




Object detection and tracking using YOLO v3 and post processing
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o o * Extract features from images using Inception_v3
Ventilations Not Ventilations * Input sequence of feature vectors to LSTM network trained on the idividual

activities
e Ex:ventilations or not
* Augmentation (noise, blur, flip, rotate, crop) Cayer (6598) Sutput Shape Faran
» 1stm_1 (LSTM) (None, 30, 2048) 33562624
# Istm_2 (LSTM) (None, 2048) 33562624
dense_1 (Dense) (None, 512) 1049088
[t"‘ ” dropout_1 (Dropout) (None, 512) 0
. J L d “; toee dense_2 (Dense) (None, 2) 1026
: Total params: 68,175,362
Trainable params: 68,175,362
Non-trainable params: @

Convolution

@ Dropout
@» Fully connected
@ Softmax

Validation acc 90% (using only RGB)

Ventilations
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Working on: i3d (inception structure but for 3d (video) , one for RGB video and one for optical flow stream



Fetal heart rate - Moyo

Possible to predict outcome at earlier stage?
Detect fetus in need for care?
(Intrauterine intervention / C-section )

Fetal heart rate
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Other ongoing projects on deep learning at UiS

Segmentation of myocardium in cardiac magnetic resconanse images

Identifying areas at risk from perfusion CT images after cerebral ischemic stroke

Identification and classification of dementia types from brain MRI

Novel Deep Neural Network Architectures for Fake news Detection in Social Networks and News Media
DeepRTP - Deep learning the real-time properties of strongly correlated quantum fields, deeprtp.uis.no

Future Energy Hub — Al and Machine Learning in energy informatics and smart cities
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