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Artificial intelligence in medical applications

Deep neural networks and deep learning – Impressive success in later years all 
thorugh the worlds of computer vision, image processing, signal processing, 
computer science  etc. 

Challenges with data access in medical applications.
Combining domain knowledge and data learning!

This short talk will focus on two medical applications: 

histopathological images, and safer births



Urinary bladder cancer 

• In 2015 it resulted in 188,000 deaths globally
• Fourth most common cancer type 

among men in Europe
• 70% increase in incidence past four 

decades in Norway
• Patients diagnosed with bladder cancer:

• Recurrence rate: 50-70% will experience one or more 
recurrences

• Progression: 10-30% will progress to a higher cancer stage

• Biopsy of the cancer tumour
• Determining the cancer grade/stage 

manually is time-consuming, 
subjective and  low reproducibility.

Wikimedia commons, CRUK 443.svg, unaltered.  
reprinted under CC-BY-SA-4.0 license
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Automated analysis of histopathological images of
unrinary bladder cancer 
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• Digital pathology: scanned whole slide 
images (WSI) opens new possibilities 

• Norway in a unique position to exploit 
this since first country digitizing all pathology labs, 
collecting all WSI in a centralized database

• Automated analysis for: 
• Time efficient, objective, reproducible 

interpretation
• Region of interest extraction for further 

analyses and/or  visualization
• Segmentation of cancer areas, and 

classification of cancer grade and diagnoses
• Prediction of recurrence and progression risks



Region of interest extraction
Want to classify different parts of the image into different categories.  The 
interesting parts can later be used with an other new network for diagnosisor
prognosis prediction
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ROI extraction / segmentation 1:

Learning relatively small networks from scratch on few and sparsly labelled data utilizing autoencoders



Level 0
400x

Level 1
100x

Level 2
25x

TR
I-C

N
N

DI
-C

N
N

M
O

N
O

-
CN

N

ROI extraction 2:

Using transfer-learning in 
multiscale.  
VGG16 networks at three
different scale, 
concatenating FV + fully
connected layers trained
on (relatively small set of) 
labelled data

Learned on labeled data



Heat Maps – example class
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 Heat maps are post processed by applying a 
Gaussian filter kernel with standard deviation 
of σ=0.6 to smooth the image.



Heat Maps – example class
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Heat Maps – example class
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 Heat maps are post processed by applying a 
Gaussian filter kernel with standard deviation 
of σ=0.6 to smooth the image.



Melanoma : Epidermis segmentation

benign

Malignant



Epidermis segmentation – U-Net approach



Safer births
Sensor signals
- Fetal heart rate
- Resucitation signals (ECG, BMV)
- Video of rescucitation

++



Video analysis
activity detection system for newborn resuscitation videos

Tried different things.  So far best results using the
pretrained model of YOLOV3, and continue training 
on our data



75 conv layers, no fully connected layers.  
Conv layer with stride 2 is used for downsampling ( no pooling) 
ResNet for improved feature learning (skip connections)
FPN for utilizing multiscale
Multi-label classification

FPN: Feature Pyramid Network

Darknet-53  (53 conv-layers) trained on Imagenet
(feature extractor)



Never enough labeled data!  Training data (video, augmented, synthetic)



Object detection and tracking using YOLO v3 and post processing



• Extract features from images using Inception_v3
• Input sequence of feature vectors to LSTM network trained on the idividual

activities
• Ex: ventilations or not
• Augmentation (noise, blur, flip, rotate, crop)

Validation acc 90% (using only RGB)
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Ventilations

Detected Ventilations

Reference Ventilations

Working on:  i3d (inception structure but for 3d (video) , one for RGB video and one for optical flow stream

Ventilations Not Ventilations



5/9/2019

Fetal heart rate - Moyo
Possible to predict outcome at earlier stage?
Detect fetus in need for care?
(Intrauterine intervention / C-section )



Other ongoing projects on deep learning at UiS

Segmentation of myocardium in cardiac magnetic resconanse images

Identifying areas at risk from perfusion CT images after cerebral ischemic stroke 

Identification and classification of dementia types from brain MRI

Novel Deep Neural Network Architectures for Fake news Detection in Social Networks and News Media

DeepRTP - Deep learning the real-time properties of strongly correlated quantum fields, deeprtp.uis.no

Future Energy Hub – AI and Machine Learning in energy informatics and smart cities
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